René Descartes (La Haye en Touraine; 31 de marzo de 1596 – Estocolmo, 11 de febrero de 1650) fue un filósofo, matemático y físico francés, considerado como el padre de la filosofía moderna, así como uno de los nombres más destacados de la revolución científica. Formuló el célebre cogito ergo sum, elemento esencial del racionalismo occidental. En física está considerado como el creador del mecanicismo, y en matemáticas, de la geometría analítica. No obstante parte de sus teorías han sido rebatidas - teoría del animal-máquina - o incluso abandonadas - teoría de los vórtices. Su pensamiento pudo aproximarse a la pintura de Poussin[3] por su estilo claro y ordenado.
Su método filosófico y científico, que expone en Reglas para la dirección de la mente (1628) y más explicitamente en su Discurso del método (1637), establece una clara ruptura con la escolástica que se enseñaba en las universidades. Está caracterizado por su simplicidad - en su Discurso del método únicamente propone cuatro normas - y pretende romper con los interminables razonamientos escolásticos. Toma como modelo el método matemático en un intento de acabar con el silogismo aristotélico empleado durante toda la Edad Media.
Consciente de las penalidades de Galileo por su apoyo al copernicanismo intentó sortear la censura disimulando de modo parcial la novedad de las ideas sobre el hombre y el mundo que exponen sus planteamientos metafísicos, unas ideas que supondrán una revolución para la filosofía y la teología. La influencia cartesiana estará presente durante todo el S.XVII: los más importantes pensadores que le sucederán desarrollarán sistemas filosóficos basados en el suyo; no obstante, mientras hubo quién asumió sus teorías - Malebranche o Arnauld - otros las rechazaron - Hobbes, Spinoza, Leibniz o Pascal.
Establece un dualismo sustancial entra alma - res cogitans, el pensamiento - y cuerpo - res extensa, la extensión. Radicalizó su posición al rechazar considerar al animal, al que concibe como una «máquina»,[4] como un cuerpo desprovisto de alma. Esta teoría será criticada durante la Ilustración, especialmente por Diderot, Rousseau y Voltaire.
jueves, 27 de enero de 2011
martes, 25 de enero de 2011
pitagoras
El Teorema de Pitágoras establece que en un triángulo rectángulo el cuadrado de la longitud de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de las longitudes de los dos catetos (los dos lados menores del triángulo rectángulo: los que conforman el ángulo recto). Si un triángulo rectángulo tiene catetos de longitudes 




El Teorema de Pitágoras lleva este nombre porque su descubrimiento recae sobre la escuela pitagórica. Anteriormente, en Mesopotamia y el Antiguo Egipto se conocían ternas de valores que se correspondían con los lados de un triángulo rectángulo, y se utilizaban para resolver problemas referentes a los citados triángulos, tal como se indica en algunas tablillas y papiros, pero no ha perdurado ningún documento que exponga teóricamente su relación. La pirámide de Kefrén, datada en el siglo XXVI a. C., fue la primera gran pirámide que se construyó basándose en el llamado triángulo sagrado egipcio, de proporciones 3-4-5.
El Teorema de Pitágoras es de los que cuentan con un mayor número de demostraciones diferentes, utilizando métodos muy diversos. Una de las causas de esto es que en la Edad Media se exigía una nueva demostración del teorema para alcanzar el grado de Magíster matheseos.
Algunos autores proponen hasta más de mil demostraciones. Otros autores, como el matemático estadounidense E. S. Loomis, catalogó 367 pruebas diferentes en su libro de 1927 The Pythagorean Proposition.
En ese mismo libro, Loomis clasificaría las demostraciones en cuatro grandes grupos: las algebraicas, donde se relacionan los lados y segmentos del triángulo; geométricas, en las que se realizan comparaciones de áreas; dinámicas a través de las propiedades de fuerza, masa; y las cuaterniónicas, mediante el uso de vectores.
Se estima que se demostró el teorema mediante semejanza de triángulos: sus lados homólogos son proporcionales.[1]
Sea el triángulo ABC, rectángulo en C. El segmento CH es la altura relativa a la hipotenusa, en la que determina los segmentos a’ y b’, proyecciones en ella de los catetos a y b, respectivamente.
Los triángulos rectángulos ABC, AHC y BHC tienen sus tres bases iguales: todos tienen dos bases en común, y los ángulos agudos son iguales bien por ser comunes, bien por tener sus lados perpendiculares. En consecuencia dichos triángulos son semejantes.
y dos triángulos son semejantes si hay dos o más ángulos congruentes.




Los resultados obtenidos son el teorema del cateto. Sumando:
Pero


Los triángulos PQR y PST son semejantes, de manera que:
siendo r la razón de semejanza entre dichos triángulos. Si ahora buscamos la relación entre sus superficies:

obtenemos después de simplificar que:
pero siendo

Es decir, "la relación entre las superficies de dos figuras semejantes es igual al cuadrado de la razón de semejanza".
Aplicando ese principio a los triángulos rectángulos semejantes ACH y BCH tenemos que:
que de acuerdo con las propiedades de las proporciones nos da:
y por la semejanza entre los triángulos ACH y ABC resulta que:

pero según (I)

y por lo tanto:
quedando demostrado el teorema de Pitágoras.
Partiendo de la configuración inicial, con el triángulo rectángulo de lados a, b, c, y los cuadrados correspondientes a catetos e hipotenusa –izquierda-, se construyen dos cuadrados diferentes:
Si a cada uno de estos cuadrados les quitamos los triángulos, evidentemente el área del cuadrado gris (c2) equivale a la de los cuadrados amarillo y azul (b2 + a2), habiéndose demostrado el teorema de Pitágoras.
El Teorema de Pitágoras lleva este nombre porque su descubrimiento recae sobre la escuela pitagórica. Anteriormente, en Mesopotamia y el Antiguo Egipto se conocían ternas de valores que se correspondían con los lados de un triángulo rectángulo, y se utilizaban para resolver problemas referentes a los citados triángulos, tal como se indica en algunas tablillas y papiros, pero no ha perdurado ningún documento que exponga teóricamente su relación. La pirámide de Kefrén, datada en el siglo XXVI a. C., fue la primera gran pirámide que se construyó basándose en el llamado triángulo sagrado egipcio, de proporciones 3-4-5.
El Teorema de Pitágoras es de los que cuentan con un mayor número de demostraciones diferentes, utilizando métodos muy diversos. Una de las causas de esto es que en la Edad Media se exigía una nueva demostración del teorema para alcanzar el grado de Magíster matheseos.
Algunos autores proponen hasta más de mil demostraciones. Otros autores, como el matemático estadounidense E. S. Loomis, catalogó 367 pruebas diferentes en su libro de 1927 The Pythagorean Proposition.
En ese mismo libro, Loomis clasificaría las demostraciones en cuatro grandes grupos: las algebraicas, donde se relacionan los lados y segmentos del triángulo; geométricas, en las que se realizan comparaciones de áreas; dinámicas a través de las propiedades de fuerza, masa; y las cuaterniónicas, mediante el uso de vectores.
Se estima que se demostró el teorema mediante semejanza de triángulos: sus lados homólogos son proporcionales.[1]
Sea el triángulo ABC, rectángulo en C. El segmento CH es la altura relativa a la hipotenusa, en la que determina los segmentos a’ y b’, proyecciones en ella de los catetos a y b, respectivamente.
Los triángulos rectángulos ABC, AHC y BHC tienen sus tres bases iguales: todos tienen dos bases en común, y los ángulos agudos son iguales bien por ser comunes, bien por tener sus lados perpendiculares. En consecuencia dichos triángulos son semejantes.
- De la semejanza entre ABC y AHC:
y dos triángulos son semejantes si hay dos o más ángulos congruentes.
- De la semejanza entre ABC y BHC:
Los resultados obtenidos son el teorema del cateto. Sumando:
Pero
La relación entre las superficies de dos figuras semejantes es igual al cuadrado de su razón de semejanza. En esto pudo haberse basado Pitágoras para demostrar su teorema.
Pitágoras también pudo haber demostrado el teorema basándose en la relación entre las superficies de figuras semejantes.Los triángulos PQR y PST son semejantes, de manera que:
siendo r la razón de semejanza entre dichos triángulos. Si ahora buscamos la relación entre sus superficies:
obtenemos después de simplificar que:
pero siendo
Es decir, "la relación entre las superficies de dos figuras semejantes es igual al cuadrado de la razón de semejanza".
Aplicando ese principio a los triángulos rectángulos semejantes ACH y BCH tenemos que:
que de acuerdo con las propiedades de las proporciones nos da:
y por la semejanza entre los triángulos ACH y ABC resulta que:
pero según (I)
y por lo tanto:
quedando demostrado el teorema de Pitágoras.
Los cuadrados compuestos en el centro y a la derecha tienen áreas equivalentes. Quitándoles los triángulos el teorema de Pitágoras queda demostrado.
Es asimismo posible que Pitágoras hubiera obtenido una demostración gráfica del teorema.Partiendo de la configuración inicial, con el triángulo rectángulo de lados a, b, c, y los cuadrados correspondientes a catetos e hipotenusa –izquierda-, se construyen dos cuadrados diferentes:
- Uno de ellos –centro- está formado por los cuadrados de los catetos, más cuatro triángulos rectángulos iguales al triángulo inicial.
- El otro cuadrado –derecha- lo conforman los mismos cuatro triángulos, y el cuadrado de la hipotenusa.
Si a cada uno de estos cuadrados les quitamos los triángulos, evidentemente el área del cuadrado gris (c2) equivale a la de los cuadrados amarillo y azul (b2 + a2), habiéndose demostrado el teorema de Pitágoras.
tales
Existen dos teoremas que reciben el nombre de Teorema de Tales, ambos atribuidos al matemático griego Tales de Mileto en el siglo VI a. C.
es necesario establecer que dos triángulos son semejantes si tienen los ángulos correspondientes iguales y sus lados son proporcionales entre si. El primer teorema de Tales recoge uno de los resultados más básicos de la geometría, a saber, que:
Según parece, Tales descubrió el teorema mientras investigaba la condición de paralelismo entre dos rectas. De hecho, el primer teorema de Tales puede enunciarse como que la igualdad de los cocientes de los lados de dos triángulos no es condición suficiente de paralelismo. Sin embargo, la principal aplicación del teorema, y la razón de su fama, se deriva del establecimiento de la condición de semejanza de triángulos, a raíz de la cual se obtiene el siguiente corolario.
Del establecimiento de la existencia de una relación de semejanza entre ambos triángulos se deduce la necesaria proporcionalidad entre sus lados. Ello significa que la razón entre la longitud de dos de ellos en un triángulo se mantiene constante en el otro.
Por ejemplo, en la figura se observan dos triángulos que, en virtud del teorema de Tales, son semejantes. Entonces, del mismo se deduce a modo de corolario que el cociente entre los lados A y B del triángulo pequeño es el mismo que el cociente entre los lados D y C en el triángulo grande. Esto es, que como por el teorema de Tales ambos triángulos son semejantes, se cumple que:
Este corolario es la base de la geometría descriptiva. Su utilidad es evidente; según Heródoto, el propio Tales empleó el corolario de su teorema para medir la altura de la pirámide de Keops en Egipto. En cualquier caso, el teorema per se demuestra la semejanza entre dos triángulos, no la constancia del cociente
[

El segundo teorema de Tales de Mileto es un teorema de geometría particularmente enfocado a los triángulos rectángulos, las circunferencias y los ángulos inscritos, consiste en el siguiente enunciado:
Este teorema es un caso particular de una propiedad de los puntos cocíclicos y de la aplicación de los ángulos inscritos dentro de una circunferencia.
Demostración: OA = OB = OC = r, siendo O el punto central del círculo y r el radio de la circunferencia. Por lo tanto
radianes). Dividiendo por dos, se obtiene:
º).
Además, la bisectriz de un triángulo corta al lado opuesto del ángulo con la bisectriz en dos segmentos iguales. Hipotenusa² = C² + C², es decir AB²=CA²+CB².
En conclusión se forma un triángulo rectángulo.
es necesario establecer que dos triángulos son semejantes si tienen los ángulos correspondientes iguales y sus lados son proporcionales entre si. El primer teorema de Tales recoge uno de los resultados más básicos de la geometría, a saber, que:
Si por un triángulo se traza una línea paralela a cualquiera de sus lados, se obtienen dos triángulos semejantes. |
Según parece, Tales descubrió el teorema mientras investigaba la condición de paralelismo entre dos rectas. De hecho, el primer teorema de Tales puede enunciarse como que la igualdad de los cocientes de los lados de dos triángulos no es condición suficiente de paralelismo. Sin embargo, la principal aplicación del teorema, y la razón de su fama, se deriva del establecimiento de la condición de semejanza de triángulos, a raíz de la cual se obtiene el siguiente corolario.
Del establecimiento de la existencia de una relación de semejanza entre ambos triángulos se deduce la necesaria proporcionalidad entre sus lados. Ello significa que la razón entre la longitud de dos de ellos en un triángulo se mantiene constante en el otro.
Por ejemplo, en la figura se observan dos triángulos que, en virtud del teorema de Tales, son semejantes. Entonces, del mismo se deduce a modo de corolario que el cociente entre los lados A y B del triángulo pequeño es el mismo que el cociente entre los lados D y C en el triángulo grande. Esto es, que como por el teorema de Tales ambos triángulos son semejantes, se cumple que:
Este corolario es la base de la geometría descriptiva. Su utilidad es evidente; según Heródoto, el propio Tales empleó el corolario de su teorema para medir la altura de la pirámide de Keops en Egipto. En cualquier caso, el teorema per se demuestra la semejanza entre dos triángulos, no la constancia del cociente
[
El segundo teorema de Tales de Mileto es un teorema de geometría particularmente enfocado a los triángulos rectángulos, las circunferencias y los ángulos inscritos, consiste en el siguiente enunciado:
Sea C un punto de la circunferencia de diámetro [AB], distinto de A y de B. Entonces el ángulo |
Este teorema es un caso particular de una propiedad de los puntos cocíclicos y de la aplicación de los ángulos inscritos dentro de una circunferencia.
Demostración: OA = OB = OC = r, siendo O el punto central del círculo y r el radio de la circunferencia. Por lo tanto
Además, la bisectriz de un triángulo corta al lado opuesto del ángulo con la bisectriz en dos segmentos iguales. Hipotenusa² = C² + C², es decir AB²=CA²+CB².
En conclusión se forma un triángulo rectángulo.
Suscribirse a:
Entradas (Atom)